jueves, 12 de febrero de 2015

Modelo atómico de Rutherford
                                        http://upload.wikimedia.org/wikipedia/commons/thumb/9/92/Rutherford_atom.svg/300px-Rutherford_atom.svg.png
Modelo de un átomo de Rutherford. Propuso un núcleo con protones y electrones girando alrededor.
El modelo atómico de Rutherford es un modelo atómico o teoría sobre la estructura interna del átomo propuesto por el químico y físico británico-neozelandés Ernest Rutherford para explicar los resultados de su "experimento de la lámina de oro", realizado en 1911.
El modelo de Rutherford fue el primer modelo atómico que consideró al átomo formado por dos partes: la "corteza", constituida por todos sus electrones, girando a gran velocidad alrededor de un "núcleo" muy pequeño; que concentra toda la carga eléctrica positiva y casi toda la masa del átomo.
Rutherford llegó a la conclusión de que la masa del átomo se concentraba en una región pequeña de cargas positivas que impedían el paso de las partículas alfa. Sugirió un nuevo modelo en el cual el átomo poseía un núcleo o centro en el cual se concentra la masa y la carga positiva, y que en la zona extranuclear se encuentran los electrones de carga negativa.
Resulta curioso observar que el término “núcleo”, no aparece en los escritos de Rutherford. Lo que él consideró esencial para explicar los resultados experimentales, fue "una concentración de carga" en el centro del átomo. Esta concentración de carga, que ahora todos denominan núcleo, era lo que podía explicar el hecho comprobado en sus experimentos de que algunas partículas salieran rebotadas en dirección casi opuesta a las partículas incidentes.
Este fue un paso crucial en la comprensión de la materia, ya implicaba la existencia de un núcleo atómico donde se concentraba toda la carga positiva y más del 99,9% de la masa. Las estimaciones del núcleo revelaban que el átomo en su mayor parte estaba vacío.
Ernest Rutherford (1871-1937) físico y químico británico, de origen neozelandés, es considerado el padre de la física nuclear. A comienzos de 1911, propuso la idea de que el átomo de cualquier elemento se compone de un núcleo diminuto en el que se reúne toda la carga eléctrica positiva y casi toda la masa y de electrones con carga negativa que giran alrededor de este núcleo, como si fueran planetas de un pequeño sistema solar unidos por fuerzas eléctricas, en vez de por la fuerza de gravedad.
En los Laboratorios Cavendish de Cambridge, trabajaba también J.J. Thomson, el descubridor del electrón. Es difícil evitar el término “partículas” al hablar de entidades fundamentales como el electrón, pero hay que recordar que no se deben imaginar únicamente como pequeñas bolitas o concentraciones de masa y energía en un punto sólido. El electrón es una entidad fundamental que no está formada por cosas más pequeñas.
No se puede decir lo mismo del núcleo de un átomo. Al principio de la segunda década del siglo XX, Rutherford descubrió que el núcleo es como una bola formada partículas apretadas unas con otras, como en un racimo de uvas: los protones.
Lo que une los electrones al núcleo no es la fuerza de gravedad que es insignificante (leyes de Newton), sino la fuerza eléctrica (leyes de Maxwell). En general, un átomo tiene tantos electrones como protones tenga su núcleo.
                                          atomo

El núcleo del uranio más común tiene 92 protones. Cada protón tiene una carga eléctrica positiva de igual magnitud que la carga eléctrica negativa del electrón.
De acuerdo al modelo atómico de Rutherford, el núcleo se compone de partículas con carga positiva, a las que denominó protones y de partículas con carga negativa, denominadas electrones. Las cargas eléctricas de protones y electrones son de distinto signo pero de igual intensidad. Por lo cual, los átomos son eléctricamente neutros.
En 1920, Rutherford predijo que en el núcleo de los átomos, existían otra partículas, a la que denominó neutrones, que tenían masa de similar magnitud a la de los protones, pero que no estaban dotadas de carga eléctrica.
Protones         Los protones tienen carga eléctrica positiva 1,602 x 10-19 Coulomb y  masa de 1,67262 × 10-27 kg.
Neutrones       Los neutrones carecen de carga eléctrica y su masa es un poco mayor que la del protón (1,67493 × 10-27 kg).
Electrones       Los electrones tienen carga eléctrica negativa igual a 1,602 x 10-19 Coulomb y masa de 9,10 × 10-31 kg. 
Protones y neutrones tienen una masa 1.836 y 1.838 veces la de un electrón. Es decir que prácticamente toda la masa de un átomo está concentrada en su núcleo.
                                             Atomo

El número de electrones que giran en torno al núcleo es igual al número de protones. Ambos tiene cargas eléctricas de igual intensidad, pero de distinto signo; por lo cual, en su conjunto, la carga eléctrica de un átomo es neutra.
No es posible medir directamente el diámetro de un átomo, menos aún el de su núcleo; pero se ha logrado determinar en forma aproximada que el diámetro promedio de un átomo es:
0,00000001 cm = 1 x 10-8 cm y el de su núcleo: 0,000000000001 cm = 1 x 10-12 cm
El tamaño de un átomo es cerca de 10.000 veces el tamaño del núcleo. Si un átomo tuviese el tamaño de una esfera de 10 metros de diámetro, el núcleo sería del tamaño de un pequeño rodamiento de 1 milímetro colocado en el centro; los electrones  serían como minúsculas partículas de polvo girando en órbitas circulares o elípticas dentro de la esfera de 10 metros.
Por consiguiente, se puede afirmar que practicamente todo el espacio ocupado por el átomo, está vacío.
Imagen de un átomo, muy lejos de estar a escala real
Rutherford pasó la segunda mitad de su vida dedicado a la docencia y dirigiendo los Laboratorios Cavendish de Cambridge, en donde se formaron otros dos ilustres científicos: Niels Bohr (1885-1962) y Robert Oppenheimer (1904-1967).
Historia
Antes de que Rutherford propusiera su modelo atómico, los físicos aceptaban que las cargas eléctricas en el átomo tenían una distribución más o menos uniforme. Rutherford trató de ver cómo era la dispersión de las partículas alfa por parte de los átomos de una lámina de oro muy delgada. Los ángulos resultantes de la desviación de las partículas supuestamente aportarían información sobre cómo era la distribución de carga en los átomos. Era de esperar que, si las cargas estaban distribuidas uniformemente según el modelo atómico de Thomson, la mayoría de las partículas atravesarían la delgada lámina sufriendo sólo ligerísimas deflexiones, siguiendo una trayectoria aproximadamente recta. Aunque esto era cierto para la mayoría de las partículas alfa, un número importante de estas sufrían deflexiones de cerca de 180º, es decir, prácticamente salían rebotadas en dirección opuesta a la incidente.  Rutherford pensó que esta fracción de partículas rebotadas en dirección opuesta podía ser explicada si se suponía la existencia de fuertes concentraciones de carga positiva en el átomo. La mecánica newtoniana en conjunción con la ley de Coulomb predice que el ángulo de deflexión de una partícula alfa relativamente liviana por parte de un átomo de oro más pesado, depende del "parámetro de impacto" o distancia entre la trayectoria de la partícula y el núcleo
se deduce que el parámetro de impacto debe ser bastante menor que el radio atómico. De hecho el parámetro de impacto necesario para obtener una fracción apreciable de partículas "rebotadas" sirvió para hacer una estimación del tamaño del núcleo atómico, que resulta ser unas cien mil veces más pequeño que el diámetro atómico. Este hecho resultó ser la capacidad uniformable sobre la carga positiva de neutrones.
Importancia del modelo y limitaciones
La importancia del modelo de Rutherford residió en proponer por primera vez la existencia de un núcleo en el átomo (término que, paradójicamente, no aparece en sus escritos). Lo que Rutherford consideró esencial, para explicar los resultados experimentales, fue "una concentración de carga" en el centro del átomo, ya que sin ella, no podía explicarse que algunas partículas fueran rebotadas en dirección casi opuesta a la incidente. Este fue un paso crucial en la comprensión de la materia, ya que implicaba la existencia de un núcleo atómico donde se concentraba toda la carga positiva y más del 99,9% de la masa. Las estimaciones del núcleo revelaban que el átomo en su mayor parte estaba vacío.
Rutherford propuso que los electrones orbitarían en ese espacio vacío alrededor de un minúsculo núcleo atómico, situado en el centro del átomo. Además se abrían varios problemas nuevos que llevarían al descubrimiento de nuevos hechos y teorías al tratar de explicarlos:
    Por un lado se planteó el problema de cómo un conjunto de cargas positivas podían mantenerse unidas en un volumen tan pequeño, hecho que llevó posteriormente a la postulación y descubrimiento de la fuerza nuclear fuerte, que es una de las cuatro interacciones fundamentales.
    Por otro lado existía otra dificultad proveniente de la electrodinámica clásica que predice que una partícula cargada y acelerada, como sería el caso de los electrones orbitando alrededor del núcleo, produciría radiación electromagnética, perdiendo energía y finalmente cayendo sobre el núcleo. Las leyes de Newton, junto con las ecuaciones de Maxwell del electromagnetismo aplicadas al átomo de Rutherford llevan a que en un tiempo del orden de 10^{-10}s, toda la energía del átomo se habría radiado, con la consiguiente caída de los electrones sobre el núcleo.2 Se trata, por tanto de un modelo físicamente inestable, desde el punto de vista de la física clásica.
Según Rutherford, las órbitas de los electrones no están muy bien definidas y forman una estructura compleja alrededor del núcleo, dándole un tamaño y forma algo indefinidas. Los resultados de su experimento le permitieron calcular que el radio atómico era diez mil veces mayor que el núcleo mismo, y en consecuencia, que el interior de un átomo está prácticamente vacío.
Modelos posteriores
El modelo atómico de Rutherford fue sustituido muy pronto por el de Bohr. Bohr intentó explicar fenomenológicamente que sólo algunas órbitas de los electrones son posibles. Lo cual daría cuenta de los espectros de emisión y absorción de los átomos en forma de bandas discretas.
El modelo de Bohr "resolvía" formalmente el problema, proveniente de la electrodinámica, postulando que sencillamente los electrones no radiaban, hecho que fue explicado por la mecánica cuántica según la cual la aceleración promedio del electrón deslocalizado es nula.                                    
Modelo de un átomo de Rutherford. Propuso un núcleo con protones y electrones girando alrededor.
.
                            Modelo atómico de Bohr
                                       http://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Bohr-atom-PAR.svg/250px-Bohr-atom-PAR.svg.png
                               Diagrama del modelo atómico de Bohr.
El modelo Este modelo dice que los electrones giran a grandes velocidades alrededor del núcleo atómico. En ese caso, los electrones se disponen en diversas órbitas circulares, las cuales determinan diferentes niveles de energía.
Para Bohr, la razón por la cual los electrones que circulan en los átomos no satisfacen las leyes de la electrodinámica clásica, es porque obedecen a las leyes de la mecánica cuántica. Sin duda, giran en torno del núcleo atómico, pero circulan únicamente sobre órbitas tales que sus impulsos resultan determinados por múltiplos enteros de la constante de Planck. Los electrones no radian durante todo el tiempo en que describen sus órbitas; solamente cuando el electrón salta de una órbita a otra, más cercana del núcleo, lanza un cuanto de luz, un fotón. Emitidos por los átomos de gases incandescentes, son los fotones los que engendran las rayas espectrales, y Bohr tuvo el portentoso acierto de poder explicar las rayas del hidrógeno. En efecto, las longitudes de onda de estas líneas espectrales se vuelven calculables a partir del modelo de átomo cuantizado por Bohr, que interpreta también el origen de los espectros elementales embrionados por los rayos X.
Bohr, gracias a la cuantización de su átomo, logró el gran éxito de explicar las líneas espectrales del hidrógeno.
Postulados
En el año 1913 Niels Bohr (Premio Nobel de Física 1922) propuso un modelo atómico, basado en la teoría cuántica de Planck para explicar cómo los electrones pueden tener órbitas estables alrededor del núcleo. Este modelo planetario es un modelo funcional que no representa el átomo (objeto físico) en sí, sino que explica su funcionamiento por medio de ecuaciones. Debido a su simplicidad, el modelo de Bohr es todavía utilizado frecuentemente como una simplificación de la estructura de la materia. Cuenta con 5 postulados fundamentales:
    1) El electrón se puede mover solo en determinadas orbitas caracterizadas por su radio
    2) Cuando el electrón se encuentra en dichas órbitas, el sistema no absorbe ni emite energía ( orbitas estacionarias )
    3) Al suministrarle al átomo energía externa, el electrón puede pasar o "excitarse" a un nivel de energía superior, correspondiente a una órbita de mayor radio
    4) Durante la caída del electrón de un nivel de mayor energía (más alejado del núcleo) a uno de menor energía (más cerca del núcleo) se libera o emite energía.
    5) Al pasar el electrón de un nivel a otro se absorbe o se libera un cuanto de energía cuyo valor está relacionado con la frecuencia absorbida o emitida según:
DeltaMonografias.com
Donde delta de E es la diferencia de energía entre los niveles considerados
El modelo atómico de Bohr o de Bohr-Rutherford es un modelo clásico del átomo, pero fue el primer modelo atómico en el que se introduce una cuantización a partir de ciertos postulados (ver abajo). Fue propuesto en 1913 por el físico danés Niels Bohr, para explicar cómo los electrones pueden tener órbitas estables alrededor del núcleo y por qué los átomos presentaban espectros de emisión característicos (dos problemas que eran ignorados en el modelo previo de Rutherford). Además el modelo de Bohr incorporaba ideas tomadas del efecto fotoeléctrico, explicado por Albert Einstein en 1905.
Introducción
Bohr se basó en el átomo de hidrógeno para hacer el modelo que lleva su nombre. Bohr intentaba realizar un modelo atómico capaz de explicar la estabilidad de la materia y los espectros de emisión y absorción discretos que se observan en los gases. Describió el átomo de hidrógeno con un protón en el núcleo, y girando a su alrededor un electrón. El modelo atómico de Bohr partía conceptualmente del modelo atómico de Rutherford y de las incipientes ideas sobre cuantización que habían surgido unos años antes con las investigaciones de Max Planck y Albert Einstein.
En este modelo los electrones giran en órbitas circulares alrededor del núcleo, ocupando la órbita de menor energía posible, o la órbita más cercana posible al núcleo. El electromagnetismo clásico predecía que una partícula cargada moviéndose de forma circular emitiría energía por lo que los electrones deberían colapsar sobre el núcleo en breves instantes de tiempo. Para superar este problema Bohr supuso que los electrones solamente se podían mover en órbitas específicas, cada una de las cuales caracterizada por su nivel energético. Cada órbita puede entonces identificarse mediante un número entero n que toma valores desde 1 en adelante. Este número "n" recibe el nombre de Número Cuántico Principal.
Bohr supuso además que el momento angular de cada electrón estaba cuantizado y sólo podía variar en fracciones enteras de la constante de Planck. De acuerdo al número cuántico principal calculó las distancias a las cuales se hallaba del núcleo cada una de las órbitas permitidas en el átomo de hidrógeno. Estos niveles en un principio estaban clasificados por letras que empezaban en la "K" y terminaban en la "Q".Posteriormente los niveles electrónicos se ordenaron por números. Cada órbita tiene electrones con distintos niveles de energía obtenida que después se tiene que liberar y por esa razón el electrón va saltando de una órbita a otra hasta llegar a una que tenga el espacio y nivel adecuado, dependiendo de la energía que posea, para liberarse sin problema y de nuevo volver a su órbita de origen. Sin embargo no explicaba el espectro de estructura fina que podría ser explicado algunos años más tarde gracias al modelo atómico de Sommerfeld. Históricamente el desarrollo del modelo atómico de Bohr junto con la dualidad onda-corpúsculo permitiría a Erwin Schrödinger descubrir la ecuación fundamental de la mecánica cuántica.
Postulados de Bohr
En 1913, Niels Bohr desarrolló su célebre modelo atómico de acuerdo a tres postulados fundamentales:1
Primer postulado
Los electrones describen órbitas circulares en torno al núcleo del átomo sin irradiar energía.
La causa de que el electrón no irradie energía en su órbita es, de momento, un postulado, ya que según la electrodinámica clásica una carga con un movimiento acelerado debe emitir energía en forma de radiación.
Para conseguir el equilibrio en la órbita circular, las dos fuerzas que siente el electrón: la fuerza coulombiana, atractiva, por la presencia del núcleo y la fuerza centrífuga, repulsiva por tratarse de un sistema no inercial, deben ser iguales en magnitud en toda la órbita.
    Donde el primer término es la fuerza eléctrica o de Coulomb, y el segundo es la fuerza centrífuga; k es la constante de la fuerza de Coulomb, Z es el número atómico del átomo, e es la carga del electrón, m_e es la masa del electrón, v es la velocidad del electrón en la órbita y r el radio de la órbita.
Donde queda expresada la energía de una órbita circular para el electrón en función del radio de dicha órbita.
Segundo postulado  
           MODELO ATÓMICO DE BOHR
                                                MODELO ATÓMICO DE BOHR.png
No toda órbita para electrón está permitida, tan solo se puede encontrar en órbitas cuyo radio cumpla que el momento angular, L, del electrón sea un múltiplo entero de \hbar={h \over 2\pi} Esta condición matemáticamente se escribe:
A partir de ésta condición y de la expresión para el radio obtenida antes, podemos eliminar v y queda la condición de cuantización para los radios
    con n=1,2,3,\dots; subíndice introducido en esta expresión para resaltar que el radio ahora es una magnitud discreta, a diferencia de lo que decía el primer postulado.
Ahora, dándole valores a n, número cuántico principal, obtenemos los radios de las órbitas permitidas. Al primero de ellos (con n=1), se le llama radio de Bohr:
   expresando el resultado en ångström.
Del mismo modo podemos ahora sustituir los radios permitidos r_n en la expresión para la energía de la órbita y obtener así la energía correspondiente a cada nivel permitido:
que es la llamada energía del estado fundamental del átomo de Hidrógeno.
Tercer postulado
                                             Bohr-model.gif
El electrón solo emite o absorbe energía en los saltos de una órbita permitida a otra. En dicho cambio emite o absorbe un fotón cuya energía es la diferencia de energía entre ambos niveles. Este fotón, según la ley de Planck tiene una energía:
Ésta última expresión fue muy bien recibida porque explicaba teóricamente la fórmula fenomenológica hallada antes por Balmer para describir las líneas espectrales observadas desde finales del siglo XIX en la desexcitación del Hidrógeno,
con n=3,4,5,\dots, y donde R_H es la constante de Rydberg para el hidrógeno. Y como vemos, la expresión teórica para el caso n_f=2, es la expresión predicha por Balmer, y el valor medido experimentalmente de la constante de Rydberg (1.097 10^7 m^{-1}), coincide con el valor de la fórmula teórica.
Se puede demostrar que este conjunto de hipótesis corresponde a la hipótesis de que los electrones estables orbitando un átomo están descritos por funciones de onda estacionarias. Un modelo atómico es una representación que describe las partes que tiene un átomo y como están dispuestas para formar un todo. Basándose en la constante de Planck E = h \nu\, consiguió cuantizar las órbitas observando las líneas del espectro.
En el año 1911, se celebró el primer Congreso Solvay de científicos, que se hizo famoso pues a él asistieron casi todos los que en el siglo XX dejaron una huella en el trascendental cambio que trajo a la ciencia el descubrimiento de los átomos.
Entre estos genios de la física estaba Ernest Rutherford, el cual, cuando regresó a Cambridge, a su Laboratorio Cavendish, habló con tanto entusiasmo acerca de la nueva teoría de los quantos, que sus argumentos lograron impresionar profundamente a su joven ayudante, Niels Bohr.
Niels Bohr se puso manos a la obra, para incluir la teoría de los cuantos en el modelo atómico de su maestro Rutherford.
Pulse en la imagen para leer mayor información acerca de los congresos Solvay
Niels Bohr sabía que las principales objeciones al modelo atómico de Rutherford eran que, de acuerdo a las leyes electromagnéticas de Maxwell, los electrones irradiarían su energía en forma de ondas electromagnéticas y, por lo tanto, describirían órbitas espirales que los irían acercando al núcleo hasta chocar contra él. Por lo cual, no había ninguna esperanza de que los átomos de Rutherford se mantuvieran estables ni que produjeran las nítidas líneas espectrales observadas en los espectroscopios.
Tomando como punto de partida el modelo de Rutherford, Niels Bohr trató de incorporar en él la teoría de “cuantos de energía” desarrollada por Max Planck y el efecto fotoeléctrico observado por Albert Einstein.
En 1913, Bohr postuló la idea de que el átomo es un pequeño sistema solar con un pequeño núcleo en el centro y una nube de electrones que giran alrededor del núcleo. Hasta aquí, todo es como en el modelo Rutherford.
Lo original de la teoría de Bohr es que afirma:
                                             átomo de Bohr
    a) que los electrones solamente pueden estar en órbitas fijas muy determinadas, negando todas las demás.
    b) que en cada una de estas órbitas, los electrones tienen asociada una determinada energía, que es mayor en las órbitas más externas.
    c) que los electrones no irradian energía al girar en torno al núcleo.
    d) que el átomo emite o absorbe energía solamente cuando un electrón salta de una órbita a otra.
    e) que estos saltos de órbita se producen de forma espontánea.
    f) que en el salto de una órbita a otra, el electrón no pasa por ninguna órbita intermedia.
La característica esencial del modelo de Bohr es que, según él, los electrones se ubican alrededor del núcleo únicamente a ciertas distancias bien determinadas. El por qué de esta disposición se estableció más tarde, cuando el desarrollo de la mecánica cuántica alcanzó su plena madurez.
El modelo de Bohr es muy simple y recuerda al modelo planetario de Copérnico, los planetas describiendo órbitas circulares alrededor del Sol.
El electrón de un átomo describe también órbitas circulares, pero los radios de estas órbitas no pueden tener cualquier valor, sino valores fijos.
Cuando un electrón salta de una órbita a otra, lo hace sin pasar por órbitas intermedias. Esto es una afirmación que rompe las ideas normales que tenemos, porque no podemos visualizar cómo sucede esto exactamente.
Es pertinente recordar lo que dijo Einstein: "... debemos admirar humildemente la bella armonía de la estructura de este mundo, en la medida en que podamos comprenderlo. Eso es todo.
                                              atomo Bohr
Consideremos un átomo con un solo electrón, en el que hay:
    a) un núcleo de carga eléctrica Z suficientemente pesado para considerarlo inmóvil.
    b) un electrón que describe una órbita circular de radio r.
En el modelo de Bohr, se estipula que la energía del electrón es mayor cuanto mayor sea el radio r.
Por lo cual, cuando el electrón salta a una órbita de menor radio, se pierde energía. Esa energía perdida es la que el átomo emite hacia el exterior en forma de un quanto de luz. Dicho de otro modo, en forma de fotón. 
Resumiendo: Los electrones no irradiarían energía (luz) si permanecieran en órbitas estables.
Pero si saltan de una órbita de menor energía a una de mayor energía, el electrón absorbe un cuanto de energía (una cantidad igual a la diferencia de energía asociada a las órbitas concernidas).
Si el electrón pasa de una órbita de mayor energía a una de órbita más interna, pierde energía y la energía perdida es lanzada al exterior en forma de radiación (luz): el electrón desprende un cuanto de energía, un fotón.
Niels Bohr dedujo que la frecuencia de la luz emitida por un átomo, está relacionada con el cambio de energía del electrón, siguiendo la regla cuántica de Planck "cambio de energía/frecuencia=constante de Planck".
Trece años después de que Max Planck decidiera incorporar el cuanto a la teoría de la luz, Bohr introdujo el cuanto en la estructura atómica y el mayor éxito de su modelo fue la explicación del espectro de emisión de luz del hidrógeno.

La teoría de Bohr sobre el átomo, fue uno de los momentos cruciales de la física. Bohr se hizo famoso y en 1922 era una gloria nacional para Dinamarca.

No hay comentarios:

Publicar un comentario